Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(15): 6631-6641, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38525589

RESUMO

rGO-MoSe2 nanocomposites were prepared via a one-pot hydrothermal method in which MoSe2 microspheres (MS) were decorated on rGO sheets. Three nanocomposites named F1, F2, and F3 were prepared using different weight ratios of MoSe2 MS to rGO: (3 : 1), (4 : 1), and (5 : 1), respectively. FESEM images showed a flower-like porous morphology of the MoSe2 microspheres. All the rGO-MoSe2 nanocomposites exhibited remarkable microwave absorption properties as demonstrated by strong reflection loss (-58 dB to -99 dB) and an ultrabroad effective absorption bandwidth (equivalent to 90% attenuation), which covers whole X and Ku frequency bands at matching thicknesses of 2.8-3.2 mm. The minimum reflection loss reached -98, -99, and -75 dB for F1, F2 and F3, respectively. The excellent absorption properties of the rGO-MoSe2 nanocomposites is related to the unique morphology and micro size of MoSe2 in which incident waves are attenuated by multiple reflections and scattering.

2.
Soft Matter ; 20(11): 2480-2490, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38385209

RESUMO

In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency. We show that crosslinking of filaments by both motors and passive crosslinkers not only augments the contributions to nematic elasticity from excluded volume effects but dominates them. By altering motor kinetics we show that a competition between motor speed and crosslinking results in a nonmonotonic dependence of nematic flow on motor speed. By modulating passive filament crosslinking we show that energy transfer into nematic flow is in large part dictated by crosslinking. Thus motor proteins both generate activity and contribute to nematic elasticity. Our results provide new insights for rationally engineering active materials.


Assuntos
Modelos Biológicos , Proteínas Motores Moleculares , Proteínas Motores Moleculares/química , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Elasticidade
3.
J Fluoresc ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396147

RESUMO

Gamma rays, as hazardous nuclear radiation, necessitate effective and rapid detection methods. This paper introduces a low-cost, fast, and simple fluorescence method based on CdTe/CdS core/shell quantum dots for gamma-ray detection. CdTe/CdS quantum dots, subjected to gamma irradiation from a 60Co source under various conditions, were investigated to assess their fluorescence sensor capabilities. The obtained results showed that an increase in CdTe/CdS nanoparticle size was associated with decreased sensitivity, while a reduction in CdTe/CdS concentration correlated with increased sensitivity. To further validate the practicality of CdTe/CdS core/shell quantum dots in gamma-ray detection, the structural properties of the quantum dots were meticulously studied. Raman spectroscopy, X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) analysis were conducted before and after gamma-ray radiation. The results demonstrated the crystalline stability of CdTe/CdS core/shell quantum dots under gamma irradiation, highlighting their robust structural integrity. In conclusion, the experimental findings underscore the exceptional potential of CdTe/CdS quantum dots as an off-fluorescence probe for simple, low-cost, fast, and on-site detection of gamma rays. This research contributes to the advancement of efficient and practical methods for gamma-ray sensing in various applications.

4.
BMC Oral Health ; 24(1): 287, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419033

RESUMO

BACKGROUND: As superior esthetic is one of the main reasons for using composite resins, it is very important to be familiar with factors and techniques affecting their optical properties and appearance. AIM: The aim of this study was comparing the effect of finishing and polishing with and without water coolant, on the color change and opacity of composite resin materials. METHODS: Composites used for preparing samples were Z250 (microhybrid), Z350XT (nanofilled), and Z550 (nanohybrid). Then divided into 4 groups of 5 depending on finishing and polishing technique (dry or wet) and time (immediate and after twenty-four hours). After polishing, samples were assessed using a spectrophotometer. Color change and opacity were determined. Data was analyzed using Kolmogorov-Smirnov, ANOVA and Tukey HSD tests. RESULTS: Type of material at both time had a significant effect on ΔE and opacity. Our results in dry and wet technique immediately(T0) showed that the highest and lowest ΔE and opacity belong to Z350XT (p < 0.001). After Twenty-four hours (T24), opacity of Z250 in wet condition was higher than dry condition (p < 0.001). CONCLUSIONS: Wet or dry technique was only effective on color in immediate polishing. Regarding opacity, technique was only effective in case of delayed polishing.


Assuntos
Resinas Compostas , Polimento Dentário , Humanos , Cor , Polimento Dentário/métodos , Teste de Materiais , Propriedades de Superfície , Resinas Compostas/uso terapêutico
5.
Biophys J ; 123(2): 157-171, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38062704

RESUMO

The actomyosin cytoskeleton generates mechanical forces that power important cellular processes, such as cell migration, cell division, and mechanosensing. Actomyosin self-assembles into contractile networks and bundles that underlie force generation and transmission in cells. A central step is the assembly of the myosin II filament from myosin monomers, regulation of which has been extensively studied. However, myosin filaments are almost always found as clusters within the cell cortex. While recent studies characterized cluster nucleation dynamics at the cell periphery, how myosin clusters grow on stress fibers remains poorly characterized. Here, we utilize a U2OS osteosarcoma cell line with endogenously tagged myosin II to measure the myosin cluster size distribution in the lamella of adherent cells. We find that myosin clusters can grow with Rho-kinase (ROCK) activity alone in the absence of myosin motor activity. Time-lapse imaging reveals that myosin clusters grow via increased myosin association to existing clusters, which is potentiated by ROCK-dependent myosin filament assembly. Enabling myosin motor activity allows further myosin cluster growth through myosin association that is dependent on F-actin architecture. Using a toy model, we show that myosin self-affinity is sufficient to recapitulate the experimentally observed myosin cluster size distribution, and that myosin cluster sizes are determined by the pool of myosin available for cluster growth. Together, our findings provide new insights into the regulation of myosin cluster sizes within the lamellar actomyosin cytoskeleton.


Assuntos
Actinas , Actomiosina , Actinas/metabolismo , Actomiosina/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosina Tipo II/metabolismo
6.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873291

RESUMO

PCR has been a reliable and inexpensive method for nucleic acid detection in the past several decades. In particular, multiplex PCR is a powerful tool to analyze many biomarkers in the same reaction, thus maximizing detection sensitivity and reducing sample usage. However, balancing the amplification kinetics between amplicons and distinguishing them can be challenging, diminishing the broad adoption of high order multiplex PCR panels. Here, we present a new paradigm in PCR amplification and multiplexed detection using UltraPCR. UltraPCR utilizes a simple centrifugation workflow to split a PCR reaction into ∼34 million partitions, forming an optically clear pellet of spatially separated reaction compartments in a PCR tube. After in situ thermocycling, light sheet scanning is used to produce a 3D reconstruction of the fluorescent positive compartments within the pellet. At typical sample DNA concentrations, the magnitude of partitions offered by UltraPCR dictate that the vast majority of target molecules occupy a compartment uniquely. This single molecule realm allows for isolated amplification events, thereby eliminating competition between different targets and generating unambiguous optical signals for detection. Using a 4-color optical setup, we demonstrate that we can incorporate 10 different fluorescent dyes in the same UltraPCR reaction. We further push multiplexing to an unprecedented level by combinatorial labeling with fluorescent dyes - referred to as "comboplex" technology. Using the same 4-color optical setup, we developed a 22-target comboplex panel that can detect all targets simultaneously at high precision. Collectively, UltraPCR has the potential to push PCR applications beyond what is currently available, enabling a new class of precision genomics assays.

7.
Proc Natl Acad Sci U S A ; 120(42): e2305283120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37819979

RESUMO

From flocks of birds to biomolecular assemblies, systems in which many individual components independently consume energy to perform mechanical work exhibit a wide array of striking behaviors. Methods to quantify the dynamics of these so-called active systems generally aim to extract important length or time scales from experimental fields. Because such methods focus on extracting scalar values, they do not wring maximal information from experimental data. We introduce a method to overcome these limitations. We extend the framework of correlation functions by taking into account the internal headings of displacement fields. The functions we construct represent the material response to specific types of active perturbation within the system. Utilizing these response functions we query the material response of disparate active systems composed of actin filaments and myosin motors, from model fluids to living cells. We show we can extract critical length scales from the turbulent flows of an active nematic, anticipate contractility in an active gel, distinguish viscous from viscoelastic dissipation, and even differentiate modes of contractility in living cells. These examples underscore the vast utility of this method which measures response functions from experimental observations of complex active systems.


Assuntos
Citoesqueleto de Actina , Miosinas , Actomiosina/fisiologia
8.
ArXiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693184

RESUMO

In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency. We show that crosslinking of filaments by both motors and passive crosslinkers not only augments the contributions to nematic elasticity from excluded volume effects but dominates them. By altering motor kinetics we show that a competition between motor speed and crosslinking results in a nonmonotonic dependence of nematic flow on motor speed. By modulating passive filament crosslinking we show that energy transfer into nematic flow is in large part dictated by crosslinking. Thus motor proteins both generate activity and contribute to nematic elasticity. Our results provide new insights for rationally engineering active materials.

9.
Soft Matter ; 19(35): 6805-6813, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650227

RESUMO

Many soft and biological materials display so-called 'soft glassy' dynamics; their constituents undergo anomalous random motions and complex cooperative rearrangements. A recent simulation model of one soft glassy material, a coarsening foam, suggested that the random motions of its bubbles are due to the system configuration moving over a fractal energy landscape in high-dimensional space. Here we show that the salient geometrical features of such high-dimensional fractal landscapes can be explored and reliably quantified, using empirical trajectory data from many degrees of freedom, in a model-free manner. For a mayonnaise-like dense emulsion, analysis of the observed trajectories of oil droplets quantitatively reproduces the high-dimensional fractal geometry of the configuration path and its associated local energy minima generated using a computational model. That geometry in turn drives the droplets' complex random motion observed in real space. Our results indicate that experimental studies can elucidate whether the similar dynamics in different soft and biological materials may also be due to fractal landscape dynamics.

10.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333106

RESUMO

The actomyosin cytoskeleton generates mechanical forces that power important cellular processes, such as cell migration, cell division, and mechanosensing. Actomyosin self-assembles into contractile networks and bundles that underlie force generation and transmission in cells. A central step is the assembly of the myosin II filament from myosin monomers, regulation of which has been extensively studied. However, myosin filaments are almost always found as clusters within the cell cortex. While recent studies characterized cluster nucleation dynamics at the cell periphery, how myosin clusters grow on stress fibers remains poorly characterized. Here, we utilize a U2OS osteosarcoma cell line with endogenously tagged myosin II to measure the myosin cluster size distribution in the lamella of adherent cells. We find that myosin clusters can grow with Rho-kinase (ROCK) activity alone in the absence of myosin motor activity. Time-lapse imaging reveals that myosin clusters grow via increased myosin association to existing clusters, which is potentiated by ROCK-dependent myosin filament assembly. Enabling myosin motor activity allows further myosin cluster growth through myosin association that is dependent on F-actin architecture. Using a toy model, we show that myosin self-affinity is sufficient to recapitulate the experimentally observed myosin cluster size distribution, and that myosin cluster sizes are determined by the pool of myosin available for cluster growth. Together, our findings provide new insights into the regulation of myosin cluster sizes within the lamellar actomyosin cytoskeleton.

11.
J Fluoresc ; 33(6): 2361-2367, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37071231

RESUMO

Gamma rays are a type of ionizing radiation that are extremely hazardous and dangerous for humans and the environment. The fluorescence method is a simple, useful, and fast method for the detection of gamma rays. In this research, CdTe/ZnS core/shell quantum dots were used as on fluorescence sensor for the detection of gamma rays. CdTe/ZnS core/shell QDs were prepared via a simple and rapid photochemical method. The shell thickness and concentration of CdTe/ZnS core/shell quantum dots were studied as two important factors in the optical behavior of CdTe/ZnS quantum dots. The obtained results showed that the PL intensity of CdTe/ZnS QDs after gamma irradiation was increased and also a slight redshift in the PL spectrum was observed. X-ray diffractions (XRD) and Raman analyses were used to study the effect of gamma irradiation on the structural properties of CdTe/ZnS QDs. The obtained results showed that gamma irradiation couldn't damage the crystalline structure of CdTe/ZnS core/shell QDs.

12.
J Fluoresc ; 33(4): 1515-1524, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36763297

RESUMO

The CdS quantum dots (QDs) were prepared by rapid, one-pot, and novel photochemical method, which used Thioglycolic acid (TGA) molecules as both stabilizer and sulfur source. The structure and morphology of the prepared CdS QDs were characterized by different analyses such as XRD, FT-IR, Raman, EDS, TEM, PL, and absorption. In this work, was used of CdS QDs as off fluorescence sensor for rapid and simple detection of lead (Pb2+) ions in water. The PL intensity of CdS QDs in the presence of lead ions decreased gradually and in the presence of 100 µM lead ions, photo emission completely quenched. The photocatalyst performance of CdS QDs was investigated by methylene blue (MB), methylene orange (MO), and rhodamine b (RB) pollutant dyes under both UV and sun lights. The obtained results showed that CdS QDs had excellent photocatalyst activity with dyes under UV light and 94.9% of MO dye, 94.4% of RB dye, and 81.2% of MB was degraded after 60 min UV irradiation. For understanding about which parameter have a key role in the photodegradation process of MO by CdS QDs under UV illumination, several radical scavengers were used, and results showed that holes have a key role in the degradation process.

13.
Int J Dent ; 2023: 2182094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845627

RESUMO

Objectives: This in vitro study was aimed to assess the effect of wet and dry finishing and polishing techniques on the flexural strength and microhardness of different commercial nanoparticle contained composite resins. Methods and Materials: The samples were made of Z250 (microhybrid), Z350 XT (nanofilled), and Z550 (nanohybrid) resin composites. Each group was subdivided into 2 subgroups according to polishing protocols. Subgroup 1 for each composite underwent wet polishing, and subgroup 2 was subject to dry polishing technique. Flexural strength and microhardness of the samples were measured at two different times of polishing (T 0 and T 24). The flexural strength test and microhardness test were measured by a 3-point bending test using a universal testing machine, and a Vickers machine, respectively. Data were analyzed by Kolmogorov-Smirnov, two-way ANOVA, and Tukey HSD tests. Results: ANOVA showed that the type of composite has a significant effect on flexural strength. Two-way ANOVA showed that, at T 0, flexural strength of all composites in the dry technique was higher than in the wet technique (p = 0.019). At T 24, Z350 XT had the lowest, and Z250 had the highest flexural strength in both techniques. The time and technique of polishing were also significantly effective on hardness. At T 0, hardness was higher in the wet compared to the dry method (p = 0.008). Tukey test showed that, at T 24, the hardness of Z350 XT was significantly higher than the other materials in both techniques. Conclusion: Immediate wet finishing and polishing presented lower flexural strength. Delayed dry/wet finishing and polishing significantly enhanced the hardness of the samples.

14.
J Fluoresc ; 32(6): 2129-2137, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35947332

RESUMO

In the present work, CdTe/ZnS high luminescence quantum dots (QDs) were synthesized by a facile, fast, one-pot, and room temperature photochemical method. Synthesized QDs were characterized by different structural and optical analyses such as X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FT-IR), Raman, photoluminescence (PL) and UV-visible (UV-vis) spectroscopies. The results confirmed the successful growth of the ZnS shell and formation of CdTe/ZnS core/shell structure. CdTe/ZnS prepared QDs indicated a PL quantum yield of about 51%. These high luminescence QDs were used for detection of Hg2+ ions in aqueous media, as catalyst for photodegradation of different organic dyes, and as antibacterial material for the inhibition of bacterial growth. PL intensity of the CdTe/ZnS QDs was completely quenched after addition of 1 m molar Hg2+in to the media. Photocatalyst activity of CdTe/ZnS QDs was studied by rhodamine b, methylene blue, and methylene orange as organic dyes under both the sun and UV illuminations, and results showed that CdTe/ZnS QDs had the best photocatalyst activity for methylene blue degradation under UV irradiation and radical scavenger results indicated that electrons have a main role in photodegradation of methylene blue dye by CdTe/ZnS QDs under UV illumination. Antibacterial effects of CdTe/ZnS QDs evaluated by Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) methods against two strains of bacteria. The results of the antibacterial test showed that CdTe/ZnS could inhibit bacterial growth in Bacillus cereus (Gram-positive) and Escherichia coli (Gram-negative G) bacteria.


Assuntos
Compostos de Cádmio , Mercúrio , Pontos Quânticos , Pontos Quânticos/química , Compostos de Cádmio/farmacologia , Compostos de Cádmio/química , Telúrio/química , Mercúrio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Azul de Metileno , Compostos de Zinco/química , Sulfetos/farmacologia , Sulfetos/química , Água/química , Antibacterianos/farmacologia , Antibacterianos/análise , Escherichia coli , Corantes/análise
16.
Phys Rev Res ; 4(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35373142

RESUMO

Lipid bilayer membranes undergo rapid bending undulations with wavelengths from tens of nanometers to tens of microns due to thermal fluctuations. Here, we probe such undulations and the membranes' mechanics by measuring the time-varying orientation of single gold nanorods (GNRs) adhered to the membrane, using high-speed dark field microscopy. In a lipid vesicle, such measurements allow the determination of the membrane's viscosity, bending rigidity, and tension as well as the friction coefficient for sliding of the monolayers over one another. The in-plane rotation of the GNR is hindered by undulations in a tension dependent manner, consistent with simulations. The motion of single GNRs adhered to the plasma membrane of living cultured cells similarly reveals the membrane's complex physics and coupling to the cell's actomyosin cortex.

17.
Luminescence ; 37(3): 431-439, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994062

RESUMO

In this work CdTe/ZnSe core/shell quantum dots (QDs) were synthesized via a simple, rapid and room temperature photochemical approach. Optical properties of aqueous prepared CdTe/ZnSe QDs were studied systematically under gamma irradiation with dose range of 0 Gy to 20 kGy. The obtained results showed a regular red shift behavior versus gamma irradiation dose, in photoluminescence peak and absorption edge of the CdTe/ZnSe QDs. Structural properties of CdTe/ZnSe QDs before and after gamma irradiation were characterized by means of X-ray diffraction (XRD), Raman and Fourier-transform infrared (FT-IR) analyses. The obtained results showed that the crystalline structure of CdTe/ZnSe core/shell QDs did not change after gamma irradiation. Concentration and shell thickness as two important factors on the sensitivity of CdTe/ZnSe QDs in front of gamma irradiation have been investigated. Based on this study, CdTe/ZnSe QDs are suggested as good candidates for gamma dosimeter.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Compostos de Cádmio/química , Pontos Quânticos/química , Radiação Ionizante , Compostos de Selênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Telúrio/química , Compostos de Zinco/química
18.
Phys Rev Lett ; 126(22): 228003, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152169

RESUMO

Understanding the flow created by particle motion at interfaces is a critical step toward understanding hydrodynamic interactions and colloidal self organization. We have developed correlated displacement velocimetry to measure flow fields around interfacially trapped Brownian particles. These flow fields can be decomposed into interfacial hydrodynamic multipoles, including force monopole and dipole flows. These structures provide key insights essential to understanding the interface's mechanical response. Importantly, the flow structure shows that the interface is incompressible for scant surfactant near the ideal gaseous state and contains information about interfacial properties and hydrodynamic coupling with the bulk fluid. The same dataset can be used to predict the response of the interface to applied, complex forces, enabling virtual experiments that produce higher order interfacial multipoles.

19.
World J Plast Surg ; 9(3): 267-273, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33330002

RESUMO

BACKGROUND: Covering burn wounds, especially high surface area burns has been always a challenge for surgeons. The Meek technique has been introduced to increase the covering area. There is paucity of clinical trials comparing the Meek technique and mesh in the same individuals to assess it efficacy. METHODS: In a case-control study, 20 patients with grade III burns who underwent the Meek technique and mesh in different areas/limbs were enrolled. Expansion rate, re-epithelization, operation time, wound infection, graft failure, etc. were compared between the two groups. RESULTS: Among patients, 18 were males and 2 were females. The mean of total body surface area (TBSA) was 36.9±16.6%. Mean time of re-epithelialization in the Meek group was 2.8±2.5 months and in the mesh group was 5.0±2.1 months (p=0.01). Operation time was shorter in modified Meek technique (p=0.04). Expansion ratio was higher in modified Meek technique (p=0.04). Local wound infection rates were slightly different without a statistically significant difference. CONCLUSION: Meek technique provided higher surface area coverage in comparison to mesh; in addition to faster re-epithelization. Therefore, it is recommended to consider the Meek technique as a routine procedure, especially those with high surface area burns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...